PJFP.com

Pursuit of Joy, Fulfillment, and Purpose

Tag: Energy transition

  • Tile the USA with Solar Panels: Casey Handmer’s Vision for an Abundant Energy Future

    Casey Handmer’s idea of “tiling the USA with solar panels” isn’t a metaphor; it’s a math-backed roadmap to abundant, clean, and cheap energy. His argument is simple: with modern solar efficiency and existing land, the United States could power its entire economy using less than one percent of its land area. The challenge isn’t physics or materials; it’s willpower.

    The Core Idea

    At roughly 20% panel efficiency and 200 W/m² solar irradiance, a 300 km by 300 km patch of panels could meet national demand. That’s about 0.5% of U.S. land, smaller than many existing agricultural zones. Rooftop solar could shoulder a huge portion, with the rest integrated across sunny regions like Nevada, Arizona, and New Mexico.

    Storage and Transmission

    Solar isn’t constant, but grid-scale storage, battery systems, and HVDC (high-voltage direct current) transmission can smooth generation and deliver power across time zones. Overbuilding solar capacity further reduces dependence on batteries while cutting costs through scale.

    Manufacturing and Materials

    Panels are mostly sand, aluminum, and glass, materials that are abundant and recyclable. With today’s industrial base, the U.S. could ramp up domestic solar production within a decade. The bottleneck isn’t the supply chain; it’s coordination and policy inertia.

    Economics and Feasibility

    Solar is already the cheapest new energy source in the world. Costs continue to drop with every doubling of installed capacity, making solar plus storage far more cost-effective than fossil fuels even without subsidies. The investment would generate massive domestic jobs, infrastructure, and long-term energy independence.

    Political and Cultural Barriers

    The hard part isn’t physics; it’s politics. Utility regulations, permitting delays, and fossil-fuel lobbying slow progress. Reforming grid governance and encouraging distributed generation are critical steps toward large-scale adoption.

    Environmental and Social Impact

    Unlike oil or gas extraction, solar uses minimal water, emits no pollution, and requires no ongoing fuel. Land use can coexist with agriculture, grazing, and wildlife if planned intelligently. Transitioning to solar energy drastically reduces emissions and long-term ecological damage.

    Key Takeaways

    • Less than 1% of U.S. land could power the entire nation with solar.
    • HVDC transmission and battery storage already make this possible.
    • Solar is now cheaper than fossil fuels and getting cheaper every year.
    • The main constraints are political and organizational, not technical.
    • A solar-powered U.S. would mean cleaner air, lower costs, and true energy independence.

    Final Thoughts

    Casey Handmer’s proposal isn’t utopian; it’s engineering reality. We already have the tools, the land, and the economics. The next step is action: faster permitting, smarter grids, and unified national effort. The future of energy abundance is ready to be built.

  • Nuclear Fusion and Artificial Intelligence: How These Technologies Could Nearly Eliminate Energy Costs by 2050

    Nuclear fusion has the potential to be a nearly limitless and clean source of energy, and there have been significant advancements in the field in recent years. Many experts believe that fusion could be a viable source of electricity within the next few decades, and some even predict that it could be nearly free by 2050.

    One of the main challenges in achieving practical nuclear fusion is finding a way to sustain the high temperatures and pressures required for the reaction to occur. This requires developing materials that can withstand the extreme conditions and finding a way to confine and control the plasma, which is the hot, ionized gas that fuels the fusion reaction.

    There are several approaches to achieving nuclear fusion, including magnetic confinement, inertial confinement, and laser-based methods. Each of these approaches has its own set of challenges, but significant progress has been made in recent years in developing materials and techniques to overcome these challenges.

    One promising approach is the use of high-temperature superconductors, which can be used to create powerful magnets that can confine and control the plasma. These superconductors have the potential to significantly improve the efficiency and stability of fusion reactions, making them a more viable option for practical use.

    Another key factor in achieving practical fusion is the development of advanced computing and artificial intelligence (AI) technologies. These technologies can be used to optimize the design and operation of fusion reactors, as well as to predict and mitigate potential problems.

    There are already several major projects underway to develop fusion energy, including the International Thermonuclear Experimental Reactor (ITER), which is a joint project involving 35 countries. ITER is expected to be operational by the 2030s, and many experts believe that it could be a major step towards achieving practical fusion energy.

    While there are still many challenges to overcome, the potential for nearly limitless, clean, and cheap energy from nuclear fusion is very real. With continued research and development, it is possible that fusion could be a nearly free source of energy by 2050, potentially revolutionizing the way we produce and use energy.